Networker Breakoutboard - Circuit Description and Assembly Manual R1.1 (2011-06-10)

MoBaCon
Sven Schlender
Rundkapellenweg 1
04249 Leipzig
Germany

1 Circuit Description

Sheet 1 shows Networker and Extension Port. The Networker can be soldered or plugged in via sockets. All IO pins of Networker are protected against high input currents with serial 100Ω resistors. SW_Reset pulls the reset pin to ground and generates a system reset or - if in shut down - awakes Networker. Connected boards on the Extension Port can be plugged in via 2×10 pin header with 2 mm grid. Networker is supplied with 3.3 V . For a flexible Extension Port all Networker pins and all available voltages (also SUP_AUX) are connected.

Sheet 2 shows the power supply. The input voltage from X401 is protected against reverse polarity (B401), ESD (D401) and short circuits (F401). The voltage (SUP_AUX) is connected to the Extension Port. The upper part generates from DC or AC with the switching regulator IC4 (in combination with D401, L401 and electrolyts C402 and C403) a stable 5V ($+5 \mathrm{~V} _\mathrm{AUX}$). A switching regulator was choosen for a wide voltage input range. An extra heat sink is not necessary.

Additionally a Power-over-Ethernet supply (Silver Telecom ones are used) can be mounted. The 48V source voltage (POE_VA1, _VA2, _VB1 and _VB2) is picked directly from Networker. The power supply generates +5 V (optional galvanically isolated $-\mathrm{Ag} 9050-\mathrm{S}$ or galvanically connected Ag8005-S). L701, C701 and C702 are used for low ripple. R702 is indicating the needed power to the power sourcing equipment (see Table 1).

PowerCLASS	Programming Resistance (Ohms)	Min Power (W)	Max Power (W)
0	Do not populate	0,44	12,95
1	$698 \pm 1 \%$	0,44	3,84
2	$383 \pm 1 \%$	3,84	6,49
3	$249 \pm 1 \%$	6,49	12,95

Table 1: Power classes for Ag9050 or Ag8005 (Source: From data sheet)
D701, D702, T401 and R401 are used for prioritized ORing of the PoE voltage for $+5 \mathrm{~V} _$AUX. Transistor T401 is open for $+5 \mathrm{~V} _$AUX only, if there is no PoE voltage via R401. PoE has the highest priority. R701 (A for Ag9050, B for Ag8005) compensates the voltage drop of D702 - the PoE voltage is adjusted to 5.2 V .

The voltage behind T401 is the first power supply of +5 V switchable thru SW_P. The linear voltage regulator IC2 converts the +5 V to 3.3 V . LED_P indicates this voltage.

Ground and power supplies can be quickly accessed via wire pads and screw terminals (X10 and X20).

Sheet 3 shows the Breakout parts for testing Networker IO. All IOs are connected to LEDs via driver (IC5 and IC6). The LEDs are used as port state indicators. R5 and R6 adjust the LED current. With jumper JP1 and JP2 the LED driver can be deactivated.

Each IO pin is connected to the middle pin of a three pol jumper. A jumper bridge chooses between a $10 \mathrm{k} \Omega$ pullup (R 1 und R 3) or pulldown resistor (R 2 und R 4). The IOs SPI_CLK and SPI_MI are an exception because their pullups can be adjusted by a potentiometer (R28
and R29) in a range between $1 \mathrm{k} \Omega-11 \mathrm{k} \Omega$. That can be useful if the Networker I2C mode is used. In that mode the resistors have to be adjusted for an intended bus frequency.

Last but not least the switches named SW_XX can pull any IO to ground. A configured Networker input and an activated pullup are necessary for using these switches.

2 Module

The module has the dimensions $134 \mathrm{~mm} \times 90 \mathrm{~mm}$. All delivered parts are THT parts. The level for assembly is estimated as medium difficult, because of the amount of parts to assemble.

The board has four mounting holes for distance bolts or enclosure.

3 Assembly manual

Parts marked with (PoE) are optional and must only be assembled if the PoE option was choosen.

3.1 Step 1

Partnumber	Description	Package	Value	Notes or speciality
D201, D701 (PoE)	Rectifier 1N4001	DO-41	50 V, 1 A	Mark at diode
C51, C61, C201, C402, C404	Ceramic condensator	RM2,5	100 nF	-
D402, D702 (PoE)	Schottky rectifier 1N5819	DO-41		Mark at diode

3.2 Step 2

Partnumber	Description	Package	Value	Notes or speciality
D401	Suppressor diode P6KE30A	CB417	6 A	Mark at diode
R28, R29	Trim potentiometer	Lying, 6 mm	$10 \mathrm{k} \Omega$	-
IC5, IC6	74HC244-8-Bit bus driver	DIL20		Indent marks pin 1

3.3 Step 3

Partnumber	Description	Package	Value	Notes or speciality
R4	Resistor network	9×2.54	$8 \times 10 \mathrm{k} \Omega$	Mark at pin 1
R1, R2, R3	Resistor network	6×2.54	$5 \times 10 \mathrm{k} \Omega$	Mark at pin 1
R5	Resistor network	9×2.54	$8 \times 100 \Omega$	Mark at pin 1
R6	Resistor network	6×2.54	$5 \times 100 \Omega$	Mark at pin 1
LEDP	LED	3 mm	Red	Check correct polarity!

3.4 Step 4

Partnumber	Description	Package	Value	Notes or speciality
Extension Port	2 sockets	$2 \times 10 \mathrm{pol}$	RM $2,00 \mathrm{~mm}$	
B401	Round bridge rectifier	RB1A	$80 \mathrm{~V} / 1.5 \mathrm{~A}$	Check correct polarity!
SW_RESET	Push button	$6 \times 6 \mathrm{~mm}$	7 mm height	
F401	Micro fuse quick	TR5	$0,4 \mathrm{~A}$	Use socket if possible
T401	PNP transistor BC640	TO-92	$80 \mathrm{~V} / 1 \mathrm{~A}$	Check correct polarity!

MoBaCon © 2011 - All rights reserved.

3.5 Step 5

Partnumber	Description	Package	Value	Notes or speciality
R1X (8 pieces), R2X (5 pieces)	Carbon-film resistor	EU0309V	$100 \Omega / 0,25 \mathrm{~W}$	
R401	Carbon-film resistor	EU0309V	82Ω / 1 W	
R203, R31, R32	Carbon-film resistor	EU0309V	$1 \mathrm{k} \Omega / 0,25 \mathrm{~W}$	
R7, R8, R33	Carbon-film resistor	EU0309V	$10 \mathrm{k} \Omega$ / 0,25 W	
R701 (PoE)	Carbon-film resistor	EU0309V	$\begin{aligned} & \text { Variant A: } 100 \\ & \mathrm{k} \Omega / 0,25 \mathrm{~W} \\ & \text { Variant B: } \\ & 15 \mathrm{k} \Omega / 0,25 \mathrm{~W} \\ & \hline \end{aligned}$	Mount variant A for Ag9050 (galvanical isolated). Mount variant B for Ag8005 (galvanical connected).
R702 (PoE)	Carbon-film resistor	EU0309V	-	See Table 1
Networker socket	2 sockets	$2 \times 10 \mathrm{pol}$	RM 2,54 mm	
C202	Electrolytic capacitor, radial	1,5-4	2,2 $\mu \mathrm{F} / 50 \mathrm{~V}$	Check correct polarity!
JP1, JP2	Pinheader	2-pol	RM 2,54 mm	
JP_X (13 pieces)	Pinheader	3-pol	RM 2,54 mm	
X1	Screw terminal	8-pol	RM 3,5 mm	
X2	Screw terminal	5-pol	RM 3,5 mm	
3 Ground connectors	Wire pad	1 mm		

3.6 Step 6

Partnumber	Description	Package	Value	Notes or speciality
X401	Screw terminal	2-pol	RM $5,0 \mathrm{~mm}$	
X10, X20	Screw terminal	3-pol	RM $5,0 \mathrm{~mm}$	
SW_X (13 pieces)	Push button	$6 \times 6 \mathrm{~mm}$	$9,5 \mathrm{~mm}$ height	
LED_1X (8 pieces) LED_2X (5 pieces)	Rectangle LED	$2 \times 5 \mathrm{~mm}$	Green	Check correct polarity! Bar marks cathode.

MoBaCon © 2011 - All rights reserved.

C702 (PoE)	Electrolytic capacitor radial, $105^{\circ} \mathrm{C}$, low ESR, RM 2,0mm	CPOL- EU2-5	$10 \mu \mathrm{~F} / 50 \mathrm{~V}$	Check correct polarity!
C 403	Electrolyt RM 5,0	$\mathrm{E} 2,5-7$	$330 \mu \mathrm{~F} / 16 \mathrm{~V}$	Check correct polarity!

3.7 Step 7

Partnumber	Description	Package	Value	Notes or speciality
C401, C701 (POE)	Electrolytic capacitor 10x20mm, RM 55,0mm	$\mathrm{E} 3,5-10$	$470 \mu \mathrm{~F} / 35 \mathrm{~V}$	Check correct polarity!
IC7 (PoE)	PoE Module	SIP-10	+5.0 V	Variant A: Ag9050 (galvanical isolated). Variant B: Ag8005 (galvanical connected).

3.8 Step 8

Partnumber	Description	Package	Value	Notes or speciality
IC2	Voltage regulator	TO220	+3.3 V	Check correct polarity! Mark indicates tab Optionally use heat sink
IC4	Simple switch 1A step- down voltage regulator	TO220-5	+5.0 V	Check correct polarity! Mark indicates tab
L401	Round storage choke		$330 \mu \mathrm{H} / 1 \mathrm{~A}$	
L701 (PoE)	Axial EMI suppression choke		$10 \mu \mathrm{H} / 5 \mathrm{~A}$	

After this step the power supply ($6-24 \mathrm{~V}$ AC/DC) can be connected to X 401 . There should be a voltage of 5 V between ground and the middle pad of the not yet assembled switch SW_P.

For testing the PoE option a Networker must be plugged into socket. Afterwards a Ethernet patch cable can be connected via PoE power supply. Leave the other power supply connected.

Now the voltage of the SW_P middle pad against ground should be about 5.5 V . After unplugging the ethernet cable again there should be 5 V .

If all voltages are ok unplug ethernet cable, power supply and remove Networker from the board.

3.9 Step 9

Partnumber	Description	Package	Value	Notes or speciality
SW_P	Rocker switch On-On	AS50APC	6 A-125 VAC	

Reconnect power supply (external supply and/or PoE) and switch SW_P on. Now the red LED should indicate power. Also check voltages 5 V and 3.3 V at the screw terminals (X10 or X20). Plug in Networker afterwards (switch of power supply first!). Install jumper, distance bolts and Extension Boards as needed.

MoBaCon © 2011 - All rights reserved.

